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Scaling and scaling crossover for transport on anisotropic fractal structures
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Diffusion into fibrous anisotropic structures can exhibit a variety of crossover phenomena. Scaling of
amount adsorbed versus time in such structures is studied by standard renormalization methods as a function
of anisotropy for several kinds of discrete models. Total mass adsorbed as a function of time from a reservoir
attached at a single point exhibits different power laws in different logarithmic ranges separated by crossover
times. For example, one expects a transition from scaling characteristic of a one-dimensional channel to that of
an effective isotropic medium as adsorbed material spreads out over successively longer length scales. In the
models studied, there is an easy diffusion pathway imbedded in a medium having a much lower diffusivity.
The easy-diffusion subspace can have fractal dimension below that of the background. Different types of
crossovers are identified. Power-law exponents for mass sorption are controlled by interplay between effective
source dimension and fractal dimension of the active diffusion space. Exponents characterizing scaling of
crossover times as a function of anisotropy are largely independent of the fractal dimension of the easy-
diffusion pathways.@S1063-651X~97!14506-8#

PACS number~s!: 61.43.Hv, 47.53.1n, 47.55.Mh, 51.10.1y
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I. INTRODUCTION

Here we analyze difference models for diffusion in
highly anisotropic fractal medium. Simple fractal lattices a
used as model structures, in part because they preserve
tain aspects of random fractal structures, which are of
creasing practical interest@1#, and partly because the regul
lattices admit an exact analytic treatment. An exact anal
of simple model problems gives insight that is different fro
that offered by the approximate solution of more realis
problems. Thus we can discover the mechanisms that co
scaling of sorption by means of diffusion, and the kinds
transitions that can correspond to scaling crossover.

Consider a fibrous material in which diffusion is fa
along the local fiber direction and slow in perpendicular
rections. The medium is represented as a fractal network@2#
Diffusion is described using coupled differential equatio
for the concentration, one equation per lattice point. A m
croscopic diffusivity is assigned to each of the bonds: un
for fast diffusion, ork for slow diffusion. In typical aniso-
tropic materials, either the material on a gross scale ha
preferred diffusion direction or the easy diffusion direction
defined only within domains of a characteristic size. Orie
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tation of different domains can fluctuate randomly, so th
gross properties of the medium are isotropic. Even wh
fibers introduce a preferred direction on all length scales,
sum over diffusion paths can lead to isotropy on all but
shortest scales. In contrast, the models discussed below
hibit effects of anisotropy over arbitrary distances. Th
might represent long fibers packed within a fractal diffusi
space, or leaky pipelines or veins embedded in a porous
trix. For these models the bonds of higher diffusivity form
easy-diffusion subspace that can be either straight or to
ous. We call this the easy subspace for short. Of partic
interest are the exponents that characterize the amoun
material adsorbed as a function of time, or the crossover t
as a function of relative local diffusivities.

Figure 1 shows such a model on a portion of the simp
lattice introduced by Dhar@3#. Dashed lines denote bonds o
diffusivity k, while solid bonds have unit diffusivity. In this
model the easy-diffusion subspace is a Hamiltonian p
from one corner to another, visiting each lattice point onc

One can anticipate an interesting crossover phenome
Suppose the structure is empty and that at timet50 one end
of the easy subspace is connected to a reservoir of mat
that will diffuse into the lattice. Whenk is small the easy
subspace behaves as a tortuous pipeline that leaks slig
The diffusing material follows the pipe initially, so the tota
amount absorbed is proportional tot1/2, characteristic of dif-
fusion into a linear chain. The mean invasion distance m
i-
7304 © 1997 The American Physical Society
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55 7305SCALING AND SCALING CROSSOVER FOR TRANSPORT . . .
sured along the pipe~i.e., chemical distance! at timet is thus
proportional tot1/2. While most of the material follows the
pipe at first, a small amount of seepage takes place via
dashed bonds. The amount transported by seepage incr
as a higher power oft than does diffusion along the pipeline
Eventually seepage dominates. There is a crossover timtc
before which the amount adsorbed scales ast1/2 and after
which it scales as some other power oft, characteristic of
diffusion into an isotropic simplex with a rescaled effecti
diffusivity. The crossover timetc should scale ask2n for
some crossover exponentn depending on geometry of th
diffusion space.

Adler studied static scaling in an anisotropic fractal latt
model with a macroscopic easy-diffusion direction@2#. The
physics of such a model is clearly different from that of t
models studied here. Different crossover is expected.

The relation between the difference models conside
here and partial differential equations~PDE’s! that would
apply on a gross scale is not trivial. First, since the diffus
space is fractal, the difference models correspond in
simple way to PDE’s, even in the isotropic limit@4,5#. Sec-
ond, consider a difference model defined on a square la
with an easy subspace that follows a space-filling curve,
iting each site in an erratic manner. Even in this case w
the space is Euclidean, the model becomes equivalent
PDE for an effective isotropic medium only after the diffe
ence equations are renormalized until the rescaled la
spacing exceeds the crossover lengthLc associated withtc .
In fact, each continuum limit corresponds to a renormali
tion fixed point of the discrete system@6#. In this paper we
will regard discrete models as more fundamental than
limiting PDE’s.

The continuum diffusion equation relates to the class
wave equation or the Schro¨dinger equation by a change i
time dependence and a change in boundary conditions.
ference schemes for diffusion derived from material cons
vation and Fick’s law define generalized difference Lap
cians based on adjacency, rather than distances or an
@4,7#. Thus microscopic diffusion models serve as guides
constructing difference models of vibration or electr
propagation.

In the case of vibrations the bonds represent springs
the differential equation at each lattice point describes tra

FIG. 1. Anisotropic version of the 3-simplex lattice. Dash
bonds have low diffusivity or high resistance. Solid bonds form
Hamiltonian path.
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verse displacement, rather than change in local concen
tion. For the Schro¨dinger equation, the local variables repr
sent probability amplitude. Therefore some results presen
here can also be transferred to vibrations or electron pro
gation, or to models for spin dynamics. For example, Ho
and Southern@8# treated spin waves on an anisotropic Sie
pinski lattice, much like the one in Fig. 1.

The general scaling theory of diffusion on fractals is r
viewed by Havlin and Ben-Avrham@9#. The Green-function
methods used below are standard@10,11#. They consist of
transfer-matrix renormalization applied to a small set of p
otal Green functions. The application to transport in poro
fractal media, including proper treatment of boundary con
tions, is worked out in detail by Gionaet al. @12#.

II. STATIC SCALING

Consider the model of Fig. 1. Finding static solutions
equivalent to finding the resistance of a network in which
dashed bonds have resistance 1/k, and the solid bonds hav
resistance 1. Basic circuit theory applies.@2# The structure is
built up in stages or generations. The generationn11 net-
work is formed by connecting three generationn networks
together using two solid bonds and one dashed one. E
part is a triangle characterized electrically by tw
Y-equivalent resistance parametersr 1 and r 2. If sites 1 and
2 are base vertices and 3 the top vertex as in Fig. 1, then
resistance from 1 to 2 is 2r 1 while the resistance from 1 to
3 is r 11r 2. By combining resistances in series and paral
one arrives at a recursion formula giving the correspond
resistancesR1 andR2 on the next generation in terms ofr 1
and r 2, namely,

R15r 11
~112 r 1!~112 kr2!

112k14kr112kr2
,

R25r 21
k~112 r 1!

2

112k14kr112kr2
. ~2.1!

These recursions comprise a primitive renormalization
that they relate resistances of portions of the structure
different length scales. They are nonlinear difference eq
tions which decouple because they commute with the
group @13,14# generated by

L5S 121r 1D ]

]r 1
1S 12k1r 2D ]

]r 2
. ~2.2!

Transforming to canonical variables,

u5
2~12k22kr112kr2!

2k~112 r 1!
,

v5 ln~ 1
21r 1!, ~2.3!
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recursion Eqs.~1! decouple to

U5u2
4~12u!u

526u
,

V5v1 lnS 213u

21u D . ~2.4!

Numerical values ofr 1 and r 2 for a givenk and genera-
tion numbern are found easily by iterating Eqs.~2.1!, start-
ing from r 15r 250 for a single point. To analyze the diffu
sion crossover and obtain the scaling exponentn it is more
convenient to use Eqs.~2.4!. There is an unstable fixed poin
at u50 with multiplier 3 and a stable fixed point atu51
with multiplier 1

5. These correspond, respectively, to res
tance scaling proportional either to the length of the e
subspace or to the resistance of an isotropic Sierpinski
work
;( 53)

n. In the framework of diffusion, these behaviors d
scribe scaling of the total amount absorbed before and a
the crossover from transport along the pipe to transport
seepage.

To compute the crossover timetc , supposek is small, so
the initial valueu052k/(11k) is nearu50. The crossover
takes place whenu makes the transit from the neighborhoo
near 0 to the the vicinity of 1, which is a rather abru
transition. Thus to findtc we first compute the generatio
numbern at whichu5 1

2 for a givenk value. Since the length
of the easy subspace is 3n, we associate this with the distanc
diffused along an equivalent one-dimensional chain. Us
the solution for diffusion on a linear chain, we hav
tc
1/2;3n or tc;9n. All that remains is to findn at which
u5 1

2.
Using undetermined coefficients@15#, we develop the

Poincare´ series at the unstable point

u~s!5s1
s2

6
2

s3

144
1O~s4!, ~2.5!

wheres5s0(k)3
n with s0(k)52k28k2/31•••. Using the

expansion Eq.~2.5! in conjunction with the recursion Eqs
~2.4! we can solveu(s* )5

1
2 to obtains*50.873361. This

gives

tc5S 1

4 k2
1

2

3 k
1••• Ds

*
2 . ~2.6!

Apparently the crossover exponent in this case isn52.
Now consider another model which will lead to a diffe

ent crossover exponent. Imagine a similar 2-simplex str
ture with bond strengths allotted differently as in Fig. 2.
the circuit analogy the solid and dashed lines have re
tances 1 and 1/k as before. The easy diffusion space is t
base line, so that ask→0 the resistance becomes 2n. In the
isotropic limit k→1 the resistance becomes (5

3)
n.

To construct the generationn11 lattice requires two dif-
ferent building blocks, two copies of the generationn lattice
form the base, while the upper block is generationn of an
isotropic lattice with uniform bond resistance 1/k. Thus the
recursion relations involve three quantities, theY-parameter
resistancesr 1 andr 2 defined as above and the correspond
-
y
t-

er
y

t

g

c-

s-

g

r 0 for the isotropic part. Intuition suggests that ther 0 recur-
sion should decouple, and indeed it does. From basic cir
theory,

R05r 01
112 kr0

3 k
,

R15r 11
~112 r 1!~11kr01kr2!

21k12kr012kr112kr2
,

R25~114kr01k2r 013k2r 0
212k2r 0r 112kr214k2r 0r 2

1k2r 2
2!@k~21k12kr012kr112kr2!#

21. ~2.7!

Again the recursions commute with a Lie group,

L5S 1

2 k
1r 0D ]

]r 0
1S 121r 1D ]

]r 1
1S 1

2 k
1r 2D ]

]r 2
,

~2.8!

with canonical variables

a5
2k

112kr0
,

u5
k~112r 1!

112kr0
, ~2.9!

v5
112 kr1
112 kr0

,

in terms of which the recursion Eqs.~2.7! become

A5
3 a

5
,

U5
3u~21u12 v !

5~11u1v !
, ~2.10!

V5
3~312 u14 v1v2!

10~11u1v !
.

Thus the variablea is completely decoupled and no long
entrers theu andv recursions. The latter have three impo

FIG. 2. Anisotropic 3-simplex with easy diffusion along th
baseline.
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55 7307SCALING AND SCALING CROSSOVER FOR TRANSPORT . . .
tant fixed points: an inaccessible source at (0,0), a sadd
(0,97), which controls the crossover, and a sink at (1,1) r
resenting the large-scale, isotropic effective-medium lim
By linearizing near the saddle we can expandu and v in
terms of scaling variabless andt such that

u~s,t!53t2
315t2

32
1
11025t2~11s1272t!

90112
1•••,

v~s,t!5
9

7
2s2t1

2205t2

608
1
1575~49s2752t!t2

90112
1•••,

~2.11!

wherea5a0(k)(
3
5)
n, s5s0(k)(

3
10 )

n, andt5t0(k)(
6
5)
n. The

initial values are

a052k, u05k, v051 . ~2.12!

Whenk is small,t anda are initially small ands is initially
large, and one finds the initial behaviors

r 05
1

2 kF S 35D
n

21G ,
r 1;

1

2
~2n21!, ~2.13!

r 2;
1

6F2n2S 12D
nG1

1

kF 914S 53D
n

2
1

7S 12D
n

2
1

2G ,
so thatr 1 increases in proportion to the length of the ba
andr 2 increases as in the isotropic fractal. After crossovet
becomes large ands small. The trajectory in (u,v) tends to
the sink representing isotropic scaling, near whichr 0, r 1 and
r 2 each tend to the same limiting form (7k/6)( 53)

n. This in-
dicates an effectively isotropic fractal medium with local d
fusivity 7k/6. The crossover occurs when (u,v) is closest to
the saddle. The simplest definition of crossover is the
terion s5t. Thus one hass0(k)(

3
10)

n5t0(k)(
6
5)
n or

t0(k)/s0(k)54n. If k is small enough so mass uptake befo
crossover is as for a linear chain, thentc5L254n, so that

tc5
3

2 k
. ~2.14!

For this model, the exponent isn51 as opposed ton52 for
the model of Fig. 1.

In fact diffusion into the structure of Fig. 2 exhibits mo
complicated scaling transitions, as discussed below wh
we consider adsorption as a function of time. Whenk is
small enough so that the easy subspace along the back
saturates before the crossover time Eq.~2.14!, there is a tran-
sition to scaling characteristic of the isotropic fractal attach
to a reservoir, not by a point, but along the entire base l
The base line acts as a line source. On the other han
crossover occurs before saturation of the base line, the in
mediate scaling is characteristic of a mixed state. Thus th
will be two transition times in the latter case.
at
-
.

,

i-
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ne

d
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re

III. DIFFUSION INCLUDING TIME DEPENDENCE

An outline of methods used is given here. Details a
presented in Ref.@12#. The discrete diffusion equation is

d

dt
ci~ t !5(

j
ki j @cj~ t !2ci~ t !#1 f i~ t !, ~3.1!

whereki j is 1 for solid bonds, andk for dashed bonds; oth
erwise it is zero. The source termf i(t) is included for gen-
erality. Equation~3.1! assumes conservation of material,
is appropriate for a closed system. Summing oni shows that
the time rate of change of the sum of all concentrations
just the sum of the source terms. When there are no sou
or sinks, material is conserved. It is convenient to rewrite
system in vector matrix form

d

dt
c~ t !2Hc~ t !5 f ~ t !, ~3.2!

whereH is explicitly mass conserving:

Hi j5ki j2d i j(
n

kin . ~3.3!

We will analyze diffusion into the structure assuming ze
initial concentration. A reservoir of concentrationc0 is at-
tached via a bond of unit diffusivity to site 1 located at o
end of the easy subspace. The term to be added to the
side of Eq.~3.1! is thend i1@c02ci(t)#. Let the reservoir part
be incorporated as a source term,f i(t)5d i1c0, while the rest
is viewed as resulting from a perturbation ofH, namely,V,
where Vi , j52d i1d j1. Thus taking Laplace transforms w
have the matrix equation

~s2H2V!ĉ~s!5 f̂ ~s!1c~0!. ~3.4!

Thus

Ĝ~d!~s!5~s2H2V!21 ~3.5!

defines a set of Green functions such that the Laplace tr
formed concentration on sitei is given by ĉi(s)
5( j Ĝi j

(d)(s) f̂ j (s).
The quantity of interest is the~sorption! ratioM (t)/M` of

material adsorbed at timet to material adsorbed at saturatio
@16#. If N is the number of lattice sites, thenM`5c0N. The
time rate of increase ofM (t) is just the rate at which mate
rial flows in across the bond of unit diffusivity connectin
site 1 to the reservoir. ThusdM(t)/dt5c02c1(t). In the
Laplace domain,

M̂ ~s!

M`
5

1

Ns2
@12Ĝ11

~d!~s!#. ~3.6!

Therefore, to study scaling with time of the sorption ratio f
material entering at a single point, it is only necessary
study scaling of 12Ĝ11

(d)(s) with s. When diffusion of ma-
terial into the structure is governed by a power law in tim
this corresponds to a straight-line segment in the log-
graph of 12Ĝ11

(d)(s) versus s. For power-law scaling,
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12Ĝ11
(d)(s);sb impliesM (t)/M`;t12b. We solve for the

Green functions in two separate steps. First we const
recursion relations for the Green functionsĜi j (s) for the
closed system. These are defined by

Ĝ~s!5~s2H !21. ~3.7!

Then from the matrix Eqs.~3.5! and~3.7! and the definition
of the sparse matrixV, one has

Ĝ11
~d!~s!5Ĝ11~s!/@11Ĝ11~s!#. ~3.8!

Recursion relations are developed for a minimum neces
set of pivotal Green functions. This is the smallest set
which recursions can be written. Both the strategy and
form of the recursions~systems of rational functions! are
much the same as in the resistance network examples of
II.

Consider the model of Fig. 1, with lower corner sites
and 2 and the upper corner 3 as shown. At generationn of
the construction the pivotal set contains the Green functi
(x,y,u,v) defined byx5Ĝ11(s), y5Ĝ21(s), u5Ĝ33(s), and

v5Ĝ31(s). Recall that generationn11 is made by assem
bling three generationn blocks, properly reoriented, and the
connecting them together with appropriate bonds.

Let matrixA be the direct sum with diagonal blocks co
sisting of three copies of theH matrix for generationn, and
let matrixB provide the three bonds and adjustments of
diagonal elements necessary to make the connections. If
trix C representsH for generationn11, thenC5A1B.
Green functions (x,y,u,v) of generationn are entries of
Ĝ(n)5(s2A)21, and the corresponding Green functio
(X,Y,U,V) for generation n11 are entries of
Ĝ(n11)5(s2C)21. By matrix manipulation one has th
Dyson equation

Ĝ~n11!5Ĝ~n!1Ĝ~n!BĜ~n11! . ~3.9!

BecauseB is sparse, Eq.~3.9! leads directly to recursion
formulas for (X,Y,U,V) in terms of (x,y,u,v). However the
formulas are rather long, and they simplify quite a bit if w
transform to symmetry-adapted variables with the relat
diffusivity scaled out, namely,

p5x1y, q5x2y, r5ku, w5Akv. ~3.10!

Then the recursions become

P5q1
~p2q!~11p1q!

213 p1q
,

Q5q1
~112 q!~p2q12pr22qr24w2!

21p13q14r12pr16qr24w2 ,

R5r2
4w2

213 p1q
, ~3.11!

W5
~p2q!w

213p1q
.

One can obtain exact numerical results by iterating eit
the full dynamical system for (x,y,u,v) or else the simpler
ct

ry
r
e

ec.

s

e
a-

e

r

Eqs.~3.11! for (p,q,r ,w). In this way we study scaling and
crossover for the models of Sec. II as well as the mix
model introduced below. However, it is interesting that t
dynamical system of Eqs.~3.11! commutes with the two-
parameter, Abelian Lie group generated by

L15S 121pD ]

]p
1S 121qD ]

]q
2S 121r D ]

]r
,

L25S 121pD ]

]p
1S 121qD ]

]q
1S 121r D ]

]r
1w

]

]w
,

~3.12!

and so the order reduces@13,14#. To effect this reduction the
recursions are expressed in terms of canonical variable
the group. Construction of canonical variables for a tw
parameter group is discussed in Ref.@17#, pp. 155–165 and
Ref. @18#, Chap. 7. For the generators, Eqs.~3.12!, one can
use

a5
4w2

~112p!~112r !
,

b5
112q

112p
,

~3.13!

c5 lnS 112r

2w D ,
d5 ln~w!.

Transforming to these variables, the recursions finally
come

A5
a~12b!2

~324a1b!~113b!
,

B5
b~31b!~326a1b!

~113b!~122a13b!
,

~3.14!

C5c1 lnS 324 a1b

12b D ,
D5d1 lnS 12b

31bD ,
so that the equations forc andd have decoupled. This fa
cilitates an analysis of the scaling properties. A compreh
sive discussion of the group theoretic method of reduc
lattice problems of this sort will be given elsewhere@19#.
The existence of one symmetry in the case of resistance
cursions is guaranteed by the fact that when each resisto
a network is scaled by a given factor, the network resiste
scales by the same factor. For the analysis below we
simply make use of the reduction Eqs.~3.14! that results
from introducing new coordinates, Eqs.~3.13!.

IV. SORPTION BEHAVIOR

In each case discussed so far, material diffuses in fro
reservoir or source attached at a single site. For interpre
the curves presented below, it is useful to look at a m
general source geometry.
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When the structure is fed from an arbitrary setB of sites
in contact with an external reservoir, the generalization
Eq. ~3.6! is @12#

M̂ ~s!

M`
5

NB
s2NF12

1

NB
(
i , jPB

Ĝi j
~d!G5

NB
s2N

C~s!, ~4.1!

whereNB is the number of sites in the sourceB, andN the
total number of sites. The functionC(s) generalizes
12Ĝ11

(d)(s), so that for a single input Eq.~4.1! reduces to Eq.
~3.6!. A pertinent result obtained in@12# is that when a given
structure is fed from different inlet configurations, i.e., fro
different B sets, the scaling exponentb associated with
C(s) can be different. Recall thatM (t)/M`;t12b. The ex-
ponentb will depend in particular on the dimension ofB and
on the structure as a whole.

For very short times or larges, diffusion into the structure
is linear, being limited by the inlet bond diffusivity. This i
an artifact of the discrete nature of the models. For an
tropic models, the amount diffusing into the easy diffusi
subspace at somewhat longer times from a source attach
one end scales ast1/2 characteristic of a linear chain. Thus
such a case, the log ofC(s) is first zero for large lns ~which
we will ignore!, then proportional to (lns)/2 for somewhat
lower lns before crossing over into other behaviors. At ve
long times the structure saturates, so that at very nega
lns, the log ofC(s) becomes linear in lns. We will ignore
the saturation limit also. These extreme limiting behavi
are not of primary concern. We concentrate on intermed
values ofs where fractal scaling can occur. A discussion
which values ofs are considered intermediate is found
Ref. @12#.

The scaling ofC(s) for intermediate values ofs for an
isotropic lattice with general source configurationB is sum-
marized by

C~s!;sb5s12~df2df
B

!/dw, ~4.2!

df anddw being the fractal and walk dimensions@9#, respec-
tively, anddf

B is the fractal dimension ofB. This scaling law
also proves to be useful for understanding diffusion into
isotropic models, even when the input is from a single po

Consider first the behavior of 12Ĝ11
(d)(s) vs s, as shown

in Fig. 3 for the model of Fig. 2 fed from site 1. Whe
k50 the exponentb is 1

2, as expected for the linear chai
For k51, b512df

S/dw
S50.318, wheredf

S5 ln3/ln251.585
anddw

S5 ln5/ln252.322 are the fractal and walk dimensio
of the isotropic simplex lattice. This is the expected behav
for an isotropic lattice fed from a corner site. For interme
ate values ofk ~from 10214 to 1022), a complex crossove
behavior occurs due to the presence of the easy subsp
which controls the scaling for larges.

Three different scaling behaviors can be identified in F
3, each with a characteristicb. For smalls, the exponent is
b15

1
2, as expected. For larges, b3512(df

S21)/dw
S , be-

cause the easy subspace saturates and acts as a line
(df
B51), feeding the rest of the structure. In the middle

gion there is another exponentb2 which will be discussed
presently. Notice from the figure that the extent of the cen
scaling region depends on the value ofk.
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A similar analysis holds for a family of other anisotrop
lattices, such as the one shown in Fig. 4, in which the e
subspace is itself a fractal in the form of a Weierstrass cu
with a fractal dimension between 1 anddf

S . We can think of
it as a subfractal or relative fractal. For the model of Fig
the easy subspace dimension isdf

B5 ln12/ln851.195.
From Fig. 5 we see that, for intermediate values ofk, a

crossover occurs similar to the one in the scaling for
model of Fig. 2. The exponents areb15

1
2; b2, to be dis-

cussed in the remainder of this section; a
b3512(df

S2df
B)/dw

S , exactly as expected for an isotrop
simplex fed from the saturated easy subspace, which ac
a sourceB of dimensiondf

B .
Now consider the middle scaling regions with expone

labeled byb2 for both anisotropic models of Figs. 2 and

FIG. 3. Log-log plot of 12Ĝ11
(d)(s) vs s for two different values

of the bond diffusivityk, for the anisotropic model of Fig. 2~order
of generationn518,N5318). Lines 1, 2, and 3, respectively, sho

the three theoretical power laws 12Ĝ11
(d)(s);sb, with b5b1, b2,

andb3. The two vertical dotted lines identify the crossover valu
sc , for the twok values.

FIG. 4. Anisotropic Sierpı´nski gasket with strong bonds~diffu-
sivity 1) distributed on a Weierstrass-like curve with fractal dime
siondf

B5 ln(12)/ln(8).
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This is the region corresponding to time scales over wh
seepage diffusion dominates, although the easy diffus
subspace has not saturated. In this range the scaling expo
is b25b1b3. That this should generally be the case can
seen from the following argument.

Consider the equivalent model of Fig. 6, comprising
simplex with all bonds at diffusivityk, connected to a one
dimensional line with bonds of diffusivity 12k, fed by site
1. Bonds connecting sites on the simplex baseline to
external line have diffusivityg@1.

Let q̂i(s) andĉi(s), respectively, be the concentrations
the simplex subgraph and in the one-dimensional line of F
6. It follows that

q̂i~s!5 (
jPB

Ĝi j* ~s;k,g!gĉj~s!, ~4.3!

wherei51, . . . ,NB are the sites on the baseline of the si
plex sublattice andĜi j* (s;k,g) is a Green function of the
simplex with bond diffusivityk and the boundaryB con-
nected by bonds of strengthg to the auxiliary line.

FIG. 5. Log-log plot of 12Ĝ11
(d)(s) vs s for the anisotropic

model of Fig. 4~generationn518, k510210). Lines 1, 2, and 3,
respectively show theoretical power laws withb5b1, b2, and
b3.

FIG. 6. Schematic representation of a model equivalent to
anisotropic structure in Fig. 2.
h
n
ent
e

e

.

-

It is shown in Ref.@12# that the scaling exponent of th
function

CS~s;k,g!512
1

NB
(
iPB

(
jPB

Ĝi j* ~s;k,g!g;s12~df
S
21!/dw

S

~4.4!

is independent of the values ofg.0 andk.0.
Since we are interested in the net transfer of material

tween the two sublattices, when the concentration inside
simplex subgraph is much smaller than the concentration
the line, a reasonable approximation is to assume the tran
rate between the sites on the external line and the sim
baseline is uniform, and can be described by a positi
independent effective transfer functionKeff(s),

ĉi~s!2q̂i~s!5Keff~s!ĉi~s!. ~4.5!

This assumption should be justified since, for largeg and
small k, the main contribution to transfer between sitei on
the extra line and the adjacent site on the simplex occ
through the bond connecting them directly. The contribut
from other paths can be regarded as a uniform perturbatio
this main term. The effective transfer rateKeff(s) in Eq. ~4.5!
is obtained by averaging over all the transfer sites,

Keff~s!5
^ĉi2q̂i&

^ ĉi&
5

^ ĉi&2K (
j
Ĝi j* gĉj L

^ĉi&
. ~4.6!

The position independence ofKeff(s) implies that the quan-
tities Ĝi j* and ĉi are uncorrelated,̂Ĝi j* cj&.^Ĝi j* &^ĉ j&. Mak-
ing this decoupling in Eq.~4.6!, it follows that

Keff~s!512K (
j
Ĝi j* gL

512
1

NB
(
iPB

(
jPB

Ĝi j* g5CS~s;k,g!. ~4.7!

Substituting Eqs.~4.5! and~4.7! into the balance equation fo
ĉi ,

sĉi5(
j
Hi j ĉ j1d i1c02g~ ĉi2q̂i !

5(
j
Hi j ĉ j1d i1c02gCS~s;k,g!ĉi . ~4.8!

Therefore, net diffusion of material between sublattices
duces to a diagonal term in the equations forĉi ,

ĉi5Ĝi1
~d,L !

„s1gCS~s;k,g!…, ~4.9!

where the superscript (L) indicates the Green functions fo
the extra line subgraph, and so the overall transfer of m
rial into the system is controlled by the composite functio

12Ĝ11
~d!~s!512Ĝ11

~d,L !
„s1gCS~s;k,g!…. ~4.10!

According to Eq. ~4.10!, the scaling behavior divides
into three regions. For s close to zero,
e
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s,gCS(s;k,g);s12(df
S
21)/dw

S
, Ĝ11

(d,L)(s);s, and therefore

12Ĝ11
(d)(s);s12(df

S
21)/dw

S
, corresponding to line 3 in Fig. 3

With increasings, 12Ĝ11
(d,L)(s);s1/2, which implies that

12Ĝ11
(d)(s);s[12(df

S
21)/dw

S]/2, which explains the scaling ex
ponentb2 the region 2 of Fig. 3, i.e.,b25b1b3. If we in-
crease s further, then CS(s;k,g);1, and therefore 1

2Ĝ11
(d)(s);s1/2, corresponding tob151/2 in Fig. 3. This

analysis explains all the crossovers of 12Ĝ11
(d)(s) observed

in Fig. 3 ~see also Figs. 7 and 8!.
Now consider the timetc51/sc for crossover between th

diffusion within the easy subspace~slopeb1 in Figs. 3 and 5!
and the seepage transport regime~slopeb2 in Figs. 3 and 5!.
This transition is defined by the elbow atsc(k), as is indi-
cated by dotted lines in Fig. 3 for twok values. It is straight-
forward to studysc(k) and hencetc(k) numerically as a
function of k. When we graph lntc versus lnk for the model
of Fig. 1 we find a straight line, as expected. The slope
intercept agree with the values of the exponentn52 and the
prefactor shown in the asymptotic expansion Eq.~2.6!. A

FIG. 7. Crossover timetc vs bond diffusivity k for the two
anisotropic models of Figs. 1 (L) and 2 (s). Lines represent the
theoretical predictions obtained from the static scaling of re
tances~line a! ~2.14! and ~line b! ~2.6!.

FIG. 8. Log-log plot of 12Ĝ11
(d)(s) vs s for the anisotropic

model of Fig. 1. The two vertical dotted lines identify the crosso
valuessc , for the twok values.
d

similar graph for the model of Fig. 2 gives a line with slop
n51, in agreement with the estimate Eq.~2.14!. However
the prefactor32 in Eq. ~2.14! does not quite fit numerica
results. We expect that a definition of crossover more sop
ticated thans5t is necessary.

V. CONCLUSION

The models presented are microscopically anisotro
and are chosen so that the easy subspace forms a long,
tinuous diffusion pathway. This is not the most general si
ation, or even the most common one. It is apt to occur
crushed fibrous materials. More commonly, one might fi
either a macroscopic easy-diffusion direction or else bund
of short, locally parallel fibers occurring in randomly or
ented domains. The latter morphology is reasonably rep
sented as bundles of randomly oriented tubules, and it
haves as a homogeneous effective medium on all but
shortest length scales. However, in the case of a continu
easy-diffusion subspace we have seen that interesting c
over behaviors are possible. When the effective dimens
ality of the easy subspace is less than that of the porous s
as a whole, these crossovers arise due to competition
tween higher local diffusivity and a growing number
shorter diffusion paths. If there is a large difference betwe
the filling time for the easy subspace and the final satura
time, the easy subspaces can behave as a distributed so
giving rise to other crossover phenomena.

Such crossover scaling is also expected in nonfra
structures, which have a similar type of easy-diffusion su
space. The simplest example is the case of a long bl
vessel or a long, one-dimensional pipeline embedded i
slightly porous matrix. If the matrix is two dimensional, fo
example, then resistance to seepage through the backgr
matrix increases logarithmically with length, while resistan
to transport by diffusion along the pipeline increases linea
There will be a crossover from linear diffusion to seepage
a time that depends in a nonalgebraic way on the seep
diffusivity. In the fractal model of Fig. 2, the time to cros
over from linear diffusion to seepage scales as the recipr
of the seepage diffusivity, while for the space-filling ea
subspace shown in Fig. 1, the crossover time scales as
inverse square of the seepage diffusivity, so that the ex
nent isn52. From numerical iteration of the relevant recu
sion relations, one also findsn52 in cases with subfracta
easy subspace. In particular, the exponentn does not depend
on fractal dimensions.

The power-law exponentb for the time dependence of th
net amount adsorbed has an interesting product form
times after crossover to seepage dominated diffusion,
before saturation of the easy subspace. In Sec. IV this
shown to correspond to a position-independent effec
transfer rate between the easy subspace and the backgr

In strongly inhomogeneous and anisotropic media, ti
scales are set by competing processes. For the most par
corresponding exponents do not characterize unive
classes. The results of the current study demonstrate se
competing transport mechanisms, and show analytic
what kinds of time dependences can result. For extrem
anisotropic morphologies treated in this work it is not co

-
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rect, for example, to apply an effective-medium approxim
tion until diffusion has spread material over distances
ceeding a correlation length which depends on the degre
anisotropy. Fortunately these distances may not be long
many systems of interest.
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