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Diffusion into fibrous anisotropic structures can exhibit a variety of crossover phenomena. Scaling of
amount adsorbed versus time in such structures is studied by standard renormalization methods as a function
of anisotropy for several kinds of discrete models. Total mass adsorbed as a function of time from a reservoir
attached at a single point exhibits different power laws in different logarithmic ranges separated by crossover
times. For example, one expects a transition from scaling characteristic of a one-dimensional channel to that of
an effective isotropic medium as adsorbed material spreads out over successively longer length scales. In the
models studied, there is an easy diffusion pathway imbedded in a medium having a much lower diffusivity.
The easy-diffusion subspace can have fractal dimension below that of the background. Different types of
crossovers are identified. Power-law exponents for mass sorption are controlled by interplay between effective
source dimension and fractal dimension of the active diffusion space. Exponents characterizing scaling of
crossover times as a function of anisotropy are largely independent of the fractal dimension of the easy-
diffusion pathways[S1063-651X97)14506-§

PACS numbgs): 61.43.Hv, 47.53tn, 47.55.Mh, 51.1Cty

I. INTRODUCTION tation of different domains can fluctuate randomly, so that
gross properties of the medium are isotropic. Even when
Here we analyze difference models for diffusion in afibers introduce a preferred direction on all length scales, the
highly anisotropic fractal medium. Simple fractal lattices aresum over diffusion paths can lead to isotropy on all but the
used as model structures, in part because they preserve cehortest scales. In contrast, the models discussed below ex-
tain aspects of random fractal structures, which are of inhibit effects of anisotropy over arbitrary distances. They
creasing practical interefi], and partly because the regular might represent long fibers packed within a fractal diffusion
lattices admit an exact analytic treatment. An exact analysispace, or leaky pipelines or veins embedded in a porous ma-
of simple model problems gives insight that is different fromtrix. For these models the bonds of higher diffusivity form an
that offered by the approximate solution of more realisticeasy-diffusion subspace that can be either straight or tortu-
problems. Thus we can discover the mechanisms that controus. We call this the easy subspace for short. Of particular
scaling of sorption by means of diffusion, and the kinds ofinterest are the exponents that characterize the amount of
transitions that can correspond to scaling crossover. material adsorbed as a function of time, or the crossover time
Consider a fibrous material in which diffusion is fast as a function of relative local diffusivities.
along the local fiber direction and slow in perpendicular di- Figure 1 shows such a model on a portion of the simplex
rections. The medium is represented as a fractal nety®tk. lattice introduced by Dhdi3]. Dashed lines denote bonds of
Diffusion is described using coupled differential equationsdiffusivity k, while solid bonds have unit diffusivity. In this
for the concentration, one equation per lattice point. A mi-model the easy-diffusion subspace is a Hamiltonian path
croscopic diffusivity is assigned to each of the bonds: unityfrom one corner to another, visiting each lattice point once.
for fast diffusion, ork for slow diffusion. In typical aniso- One can anticipate an interesting crossover phenomenon.
tropic materials, either the material on a gross scale has 8uppose the structure is empty and that at tim€@ one end
preferred diffusion direction or the easy diffusion direction isof the easy subspace is connected to a reservoir of material
defined only within domains of a characteristic size. Orien-that will diffuse into the lattice. Whekk is small the easy
subspace behaves as a tortuous pipeline that leaks slightly.
The diffusing material follows the pipe initially, so the total
*Permanent address: Dipartimento di Ingegneria Chimica, Uniamount absorbed is proportional ttd?, characteristic of dif-
versitadi Cagliari, piazza d’Armi, 09123 Cagliari, Italy. fusion into a linear chain. The mean invasion distance mea-
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verse displacement, rather than change in local concentra-
tion. For the Schrdinger equation, the local variables repre-
sent probability amplitude. Therefore some results presented
here can also be transferred to vibrations or electron propa-
gation, or to models for spin dynamics. For example, Hood
and Southeri8] treated spin waves on an anisotropic Sier-
pinski lattice, much like the one in Fig. 1.

The general scaling theory of diffusion on fractals is re-
viewed by Havlin and Ben-Avrhaif®]. The Green-function
methods used below are standqdd,11]. They consist of
transfer-matrix renormalization applied to a small set of piv-
otal Green functions. The application to transport in porous
fractal media, including proper treatment of boundary condi-
tions, is worked out in detail by Gionet al. [12].

FIG. 1. Anisotropic version of the 3-simplex lattice. Dashed
bond_s ha_lve low diffusivity or high resistance. Solid bonds form a Il STATIC SCALING
Hamiltonian path.

Consider the model of Fig. 1. Finding static solutions is
sured along the pip@.e., chemical distangeat timet is thus  equivalent to finding the resistance of a network in which the
proportional tot'2 While most of the material follows the dashed bonds have resistanck, Bnd the solid bonds have
pipe at first, a small amount of seepage takes place via thesistance 1. Basic circuit theory appliE2] The structure is
dashed bonds. The amount transported by seepage increaggit up in stages or generations. The generatianl net-
as a higher power dfthan does diffusion along the pipeline. work is formed by connecting three generatiometworks
Eventually seepage dominates. There is a crossoverttime together using two solid bonds and one dashed one. Each
before which the amount adsorbed scales®®sand after part is a triangle characterized electrically by two
which it scales as some other power tofcharacteristic of y.equivalent resistance parametegsandr,. If sites 1 and
diffusion into an isotropic simplex with a rescaled effective2 are base vertices and 3 the top vertex as in F|g 1, then the
diffusivity. The crossover time. should scale ak™" for  resjstance from 1 to 2 isr2 while the resistance from 1 to
some crossover exponentdepending on geometry of the 3 isr,+r,. By combining resistances in series and parallel,
diffusion space. one arrives at a recursion formula giving the corresponding

Adler studied static scaling in an anisotropic fractal latticeresistance®®; andR, on the next generation in terms of
model with a macroscopic easy-diffusion directi@]. The  andr,, namely,
physics of such a model is clearly different from that of the
models studied here. Different crossover is expected.

The relation between the difference models considered (1+2r)(1+2kry)
here and partial differential equatiot®DE’s) that would Ry=ra+ 1+2k+4krq+2kr,’
apply on a gross scale is not trivial. First, since the diffusion
space is fractal, the difference models correspond in no
simple way to PDE'’s, even in the isotropic linf,5]. Sec- K(1+2r,)?
ond, consider a difference model defined on a square lattice Ro=T ot T o Ak 2krs (2.1

. - . 1 2
with an easy subspace that follows a space-filling curve, vis-
iting each site in an erratic manner. Even in this case when
the space is Euclidean, the model becomes equivalent to a These recursions comprise a primitive renormalization in
PDE for an effective isotropic medium only after the differ- that they relate resistances of portions of the structure at
ence equations are renormalized until the rescaled latticdifferent length scales. They are nonlinear difference equa-
spacing exceeds the crossover lenigthassociated witl,. . tions which decouple because they commute with the Lie
In fact, each continuum limit corresponds to a renormalizagroup[13,14] generated by
tion fixed point of the discrete systeff]. In this paper we
will regard discrete models as more fundamental than the
limiting PDE’s. ﬁ_(lﬂ )i+

The continuum diffusion equation relates to the classical 2 oy
wave equation or the Schiimger equation by a change in
time dependence and a change in boundary conditions. Dif-
ference schemes for diffusion derived from material conserdransforming to canonical variables,
vation and Fick's law define generalized difference Lapla-
cians based on adjacency, rather than distances or angles
[4,7]. Thus microscopic diffusion models serve as guides for U= — (1—k—2kry+2krp)
constructing difference models of vibration or electron 2k(1+2ry) ’
propagation.

In the case of vibrations the bonds represent springs and
the differential equation at each lattice point describes trans- v=In(3+ry), (2.3

1 d 22
ﬂ-i-l'z Fz (2.2
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recursion Eqs(1) decouple to 3

U 4(1-u)u N
U560 ! '

2+3u

R s- -
Tk (2.9

V=v+In

Numerical values of ; andr, for a givenk and genera- AN S
tion numbem are found easily by iterating Eq&.1), start- / \ ; .
ing fromr,;=r,=0 for a single point. To analyze the diffu- { \ N \
sion crossover and obtain the scaling exponeittis more AN AN SN S
convenient to use Eq§2.4). There is an unstable fixed point L e
at u=0 with multiplier 3 and a stable fixed point at=1
with multiplier ¢. These correspond, respectively, to resis- FiG. 2. Anisotropic 3-simplex with easy diffusion along the
tance scaling proportional either to the length of the easyaseline.
subspace or to the resistance of an isotropic Sierpinski net-
work ro for the isotropic part. Intuition suggests that therecur-
~(3)". In the framework of diffusion, these behaviors de- sion should decouple, and indeed it does. From basic circuit
scribe scaling of the total amount absorbed before and afteheory,
the crossover from transport along the pipe to transport by
seepage. 1+2kry

To compute the crossover tintg, suppose is small, so Ro=ro+ 3k '
the initial valueug=2k/(1+Kk) is nearu=0. The crossover
takes place when makes the transit from the neighborhood (1+2r)(1+krg+Kkry)
near 0 to the the vicinity of 1, which is a rather abrupt Ri=rit o7 k+2kro+2kry+ 2kr,’

transition. Thus to find. we first compute the generation

numbem at whichu= 3 for a givenk value. Since the length R, = (1+4kro+k2r g+ 3k?ro?+ 2k?ror 1+ 2kr,+ 4K2ror ,
of the easy subspace i§,3ve associate this with the distance o .

diffused along an equivalent one-dimensional chain. Using Tk 29)[K(2+k+2krg+2kry +2kr;) ] 2.7
the solution for diffusion on a linear chain, we have

{4230 or t,~9". All that remains is to findh at which Again the recursions commute with a Lie group,

u=3.

Using undetermined coefficienfsl5], we develop the L=|-—+T1g i+ S+ry i+(i+r2)i,
Poincareseries at the unstable point 2k o 2 ary \2k F: 2.9

u(s)=o+ 0_2 - U_3+o( 4) (2.5  With canonical variables
776 144" 27 '
2k
whereo = (k) 3" with oo(k) = 2k—8k%3+ - - -. Using the a= T ok
expansion Eq(2.5 in conjunction with the recursion Egs. 0
(2.4) we can solveu(a, ) =3 to obtaino, =0.873361. This K(1+2r,)
gives U= T ok, (2.9
1 2 )
tC_(WJFﬂJF"' ol (2.6) v:1+2kr1
1+2krg’

Apparently the crossover exponent in this case+s2. ) ) )

Now consider another model which will lead to a differ- in terms of which the recursion Eq&2.7) become
ent crossover exponent. Imagine a similar 2-simplex struc- 3a
ture with bond strengths allotted differently as in Fig. 2. In -
the circuit analogy the solid and dashed lines have resis- 5°
tances 1 and k/as before. The easy diffusion space is the
base line, so that de—0 the resistance become&. 2n the _3u(2+u+2v) 2.10
isotropic limit k— 1 the resistance become3)T. 51+u+v) ’ |

To construct the generatiant+ 1 lattice requires two dif-
ferent building blocks, two copies of the generatiohattice 3(3+2u+4v+v?)
form the base, while the upper block is generatioof an V= 10(1+u+v)

isotropic lattice with uniform bond resistancek1/Thus the
recursion relations involve three quantities, tfigarameter Thus the variablex is completely decoupled and no longer
resistances; andr, defined as above and the correspondingentrers theu andv recursions. The latter have three impor-
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tant fixed points: an inaccessible source at (0,0), a saddle at Ill. DIFFUSION INCLUDING TIME DEPENDENCE
(0,2), which controls the crossover, and a sink at (1,1) rep-
resenting the large-scale, isotropic effective-medium limit.

By linearizing near the saddle we can expanénduv in
terms of scaling variables and = such that

An outline of methods used is given here. Details are
presented in Ref12]. The discrete diffusion equation is

d
FeO=2 kjlg®-c®]+fih, @D
315 110252(110+2727) !
u(o,7)=37— + +.oen,

32 90112 wherek;; is 1 for solid bonds, andét for dashed bonds; oth-
erwise it is zero. The source terfi(t) is included for gen-
22052 1575490 —752r) 72 erality. Equation(3.1) assumes conservation of material, as
v(o,7)= 7797 T+ 608 + 90112 T is appropriate for a closed system. Summing @mows that

(2.1  the time rate of change of the sum of all concentrations is
just the sum of the source terms. When there are no sources
or sinks, material is conserved. It is convenient to rewrite the

— 3\\n 3\n — 6yn
wherea=a,(k)(5)", 0= o(k) ()", andr=o(k)(s)". The system in vector matrix form

initial values are
d
ag=2k, Uup=k, wvo=1. (2.12 grc(O—He®=1(1), 3.2

Whenk is small, 7 anda are initially small andr is initially  whereH is explicitly mass conserving:

large, and one finds the initial behaviors
3 n
HR

We will analyze diffusion into the structure assuming zero

1 initial concentration. A reservoir of concentratiag is at-

r~=(2"-1), (2.13  tached via a bond of unit diffusivity to site 1 located at one

2 end of the easy subspace. The term to be added to the right

side of Eq.(3.1) is thend;4[ co—c;(t)]. Let the reservoir part

1 kij —5”; Kin - (3.3

rozﬂ

1 on 1\" 1/ 9/(/5\" 1/1\" 1 be incorporated as a source terfii{t) = §;1Cq, While the rest
2>6% 12 |Tkl1a3 ~7l2] "2 is viewed as resulting from a perturbation léf namely,V,
where V; ;= — §;16j;. Thus taking Laplace transforms we

so thatr, increases in proportion to the length of the basenave the matrix equation
andr, increases as in the isotropic fractal. After crossover, - -
becomes large and small. The trajectory iny,v) tends to (s—H=V)c(s)=1(s)+c(0). 3.4
the sink representing isotropic scaling, near whighr; and
r, each tend to the same limiting form K/6)(3)". This in- Thus
dicates an effectively isotropic fractal medium with local dif-
fusivity 7k/6. The crossover occurs when, () is closest to
the saddle. The simplest definition of c;rossover 'ﬁ the criy defines a set of Green functions such that the Laplace trans-
terion o=7. Thus one hasoy(K)()"=7o(k)(d)
7o(K)/oo(K)=4". If k is small enough so mass uptake before’'Med concentration on  sitei is given by ci(s)
crossover is as for a linear chain, them-L2=4", so that ~ =2;G{(9)f;(s).
The quantity of interest is th@orptior ratio M (t)/M., of
3 material adsorbed at tinteto material adsorbed at saturation
tczﬁ. (2.14  [16]. If N is the number of lattice sites, théwh,,=c,N. The
time rate of increase dfi(t) is just the rate at which mate-
rial flows in across the bond of unit diffusivity connecting
site 1 to the reservoir. ThudM(t)/dt=cy—c4(t). In the
Laplace domain,

G9(s)=(s—H-V)?! (3.5

For this model, the exponent is=1 as opposed to=2 for
the model of Fig. 1.

In fact diffusion into the structure of Fig. 2 exhibits more
complicated scaling transitions, as discussed below where
we consider adsorption as a function of time. WHeris
small enough so that the easy subspace along the backbone
saturates before the crossover time £q14), there is a tran-
sition to scaling characteristic of the isotropic fractal attached fherefore, to study scaling with time of the sorption ratio for
to a reservoir, not by a point, but along the entire base Ilnematerlal entering at 3 single point, it is only necessary to
The base line acts as a line source. On the other hand, ftudy scaling of +G{9(s) with s. When diffusion of ma-
crossover occurs before saturation of the base line, the inteferial into the structure is governed by a power law in time,
mediate scaling is characteristic of a mixed state. Thus therdlis corresponds to a straight-line segment in the log-log
will be two transition times in the latter case. graph of 1-G{J(s) versuss. For power-law scaling,

M 1 R
%:@[1—@%]. (3.6
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1-G{P(s)~s” implies M(t)/M..~t*"#. We solve for the EQs.(3.11 for (p,q.r,w). In this way we study scaling and
Green functions in two separate steps. First we construdrossover for the models of Sec. Il as well as the mixed
recursion relations for the Green functioﬁsj(s) for the model introduced below. However, it is interesting that the

closed system. These are defined by dynamical system of_ Eqe3.11) commutes with the two-
parameter, Abelian Lie group generated by

G(s)=(s—H) ™. (3.7 1 PR g 1 P
Then from the matrix Eq943.5 and(3.7) and the definition L= §+p %Jr §+q>%— §+r)5’
of the sparse matri¥, one has 1 J 1 J 1 J J
&W(8)=G (/[ 1+Gy(s)]. 3.9 L=t P 12T 5 T2t or T Waw:

3.1

Recursion relations are developed for a minimum necessary (312
set of pivotal Green functions. This is the smallest set forand so the order reducgs3,14]. To effect this reduction the
which recursions can be written. Both the strategy and théecursions are expressed in terms of canonical variables of
form of the recursiongsystems of rational functionsare  the group. Construction of canonical variables for a two-
much the same as in the resistance network examples of Segrameter group is discussed in Ref7], pp. 155-165 and
I. Ref.[18], Chap. 7. For the generators, E¢3.12, one can

Consider the model of Fig. 1, with lower corner sites 1 use
and 2 and the upper corner 3 as shown. At generationh
the construction the pivotal set contains the Green functions

(x,y,u,v) defined byx=G1(s), y=G,(s), u=Gays), and

4w?

= T+2p)1+2r)’

v=G34(s). Recall that generation+1 is made by assem- _1+2q

bling three generation blocks, properly reoriented, and then T 1+2p’

connecting them together with appropriate bonds. (3.13
Let matrix A be the direct sum with diagonal blocks con- i 1+2r

sisting of three copies of thid matrix for generatiom, and =M=

let matrix B provide the three bonds and adjustments of the
diagonal elements necessary to make the connections. If ma- d=In(w).
trix C representdH for generationn+1, thenC=A+B.

Green functions X,y,u,v) of generationn are entries of

G(n)=(s—A)*1, and the corresponding Green functionsCO
(X,Y,U,V) for generation n+1 are entries of a(l—b)?
é(nﬂ):(s—C)*l. By matrix manipulation one has the A_(3—4a+b)(1+3b)’
Dyson equation

Transforming to these variables, the recursions finally be-
me

_ b(3+b)(3—6a+b)

Cin+y=Cm T GmBGn+1) - (3.9 ~ (1+3b)(1-2a+3b)’ (3.14
BecauseB is sparse, Eq(3.9) leads directly to recursion 3—4a+b '
formulas for (X,Y,U,V) in terms of &,y,u,v). However the C=c+|n(Tb ,

formulas are rather long, and they simplify quite a bit if we
transform to symmetry-adapted variables with the relative
diffusivity scaled out, namely, D=d+In

p=x+y, q=x—y, r=ku, w=\kv. (3.10

3+b

so that the equations far andd have decoupled. This fa-

Then the recursions become cilitates an analysis of the scaling properties. A comprehen-
sive discussion of the group theoretic method of reducing
P (P—9)(1+p+q) lattice problems of this sort will be given elsewhdk9)].
2+3p+q The existence of one symmetry in the case of resistance re-
) cursions is guaranteed by the fact that when each resistor in
_ . (1+29)(p—qg+2pr—2qr—4w’) a network is scaled by a given factor, the network resistence
2+p+3q+4r+2pr+6qr—4w?’ scales by the same factor. For the analysis below we can
, simply make use of the reduction Eq8.14 that results
R=r— Aw (3.1 from introducing new coordinates, Eq8.13.
2+3p+q’ '
IV. SORPTION BEHAVIOR
_ (p—q)w
" 2+3p+q’ In each case discussed so far, material diffuses in from a

reservoir or source attached at a single site. For interpreting
One can obtain exact numerical results by iterating eithethe curves presented below, it is useful to look at a more
the full dynamical system forx,y,u,v) or else the simpler general source geometry.
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When the structure is fed from an arbitrary geof sites 100 .
in contact with an external reservoir, the generalization of L0 b o kmke10 ]
Eq. (3.6) is [12] . b) k= ky = 10°8
I\A/I(s)_NB1 1 s é<d>—Nqu 10-2 ]
M_m_sz_{ _N_Bi,jeB ' }_ﬁ (s), (4.1 F ]
whereNj is the number of sites in the souré andN the 107t F E

total number of sites. The functionV(s) generalizes
1-G{9(s), so that for a single input E@4.1) reduces to Eq.
(3.6). A pertinent result obtained iri2] is that when a given 1079+
structure is fed from different inlet configurations, i.e., from
different B sets, the scaling exponemt associated with
W¥(s) can be different. Recall thatl (t)/M,,~t*~#. The ex- 10-8 L : ,
ponentB will depend in particular on the dimension Bfand 10710 so(ky)  se(k1) 10° ¢
on the structure as a whole.
For very short times or largg diffusion into the structure N )
FIG. 3. Log-log plot of 1 G{?(s) vs s for two different values

is linear, being limited by the inlet bond diffusivity. This is c oYt ) . i
an artifact of %he discretye nature of the models.yFor aniso?f the bond diffusivityk, for the anisotropic model of Fig. @rder

C o DD N .
tropic models, the amount diffusing into the easy diﬁ‘usionOf generatlom—l.e, N=3%). Lines }(5 and i’ re_SpeCt_'VE}ly’ show
subspace at somewhat longer times from a source attachedft§ three theoretical power laws-153;(s)~s”, with 5=, Sz,
one end scales a&?2 characteristic of a linear chain. Thus in and B;. The two vertical dotted lines identify the crossover values
such a case, the log df (s) is first zero for large Ia (which Se for the twok values.

we will ignore), then proportional to (lg)/2 for somewhat - . . . .
lower Ins before crossing over into other behaviors. At very A similar analysis holds for a family of other anisotropic

long times the structure saturates, so that at very negati\)gtt'ces' su_ch as the one s'hown in Fig. 4, In V.Vh'Ch the easy
Ins, the log of W (s) becomes linear in B We will ignore subspace is itself a fractal in the form of a Weierstrass curve

the saturation limit also. These extreme limiting behaviorsf’vIth a fractal dimension between 1 adﬁ. We can think of

are not of primary concern. We concentrate on intermediatd} @ @ subfractal or relative fractal. For the model of Fig. 3
values ofs where fractal scaling can occur. A discussion of € €asy subspace d|menS|ord§%In12/InE§:1.195.
which values ofs are considered intermediate is found in  From Fig. 5 we see that, for intermediate valueskpf
Ref. [12]. crossover occurs similar to the one in the scaling for the
. e .
The scaling of¥(s) for intermediate values of for an ~ Model of Fig. 2. The exponents afg =3 B, to be dis-

isotropic lattice with general source configuratiBris sum- ~ cussed isn lt;hes remainder of this section; and
marized by Bz=1—(d7—df)/d,, exactly as expected for an isotropic

simplex fed from the saturated easy subspace, which acts as
W(s)~sh=sl—(dr—dprdy, (4.7  asourceB of dimensiondf .
Now consider the middle scaling regions with exponents

d; andd,, being the fractal and walk dimensiof®], respec- labeled bys, for both anisotropic models of Figs. 2 and 4.
tively, anddf is the fractal dimension oB. This scaling law
also proves to be useful for understanding diffusion into an-
isotropic models, even when the input is from a single point.

Consider first the behavior of-1G{%(s) vs s, as shown
in Fig. 3 for the model of Fig. 2 fed from site 1. When
k=0 the exponenp is 3, as expected for the linear chain.
For k=1, B=1—d7/d;=0.318, whered?=1In3/In2=1.585
andd; =In5/In2=2.322 are the fractal and walk dimensions
of the isotropic simplex lattice. This is the expected behavior
for an isotropic lattice fed from a corner site. For intermedi-
ate values ok (from 10 1% to 10 2), a complex crossover
behavior occurs due to the presence of the easy subspac
which controls the scaling for large

Three different scaling behaviors can be identified in Fig.
3, each with a characteristg. For smalls, the exponent is
B1=1%, as expected. For large, B3=1—(d?—1)/d5, be-
cause the easy subspace saturates and acts as a line sou 1
(df6=1), feeding the rest of the structure. In the middle re-
gion there is another exponeft which will be discussed FIG. 4. Anisotropic Siermski gasket with strong bondsliffu-
presently. Notice from the figure that the extent of the centraivity 1) distributed on a Weierstrass-like curve with fractal dimen-
scaling region depends on the valuekof sion d¥=1In(12)/In(8).
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10° It is shown in Ref[12] that the scaling exponent of the
I function
1-Giy T 1
S S
102 f 1 V(s;k,0) 1——2 2, Gi(sik,g)g—s' it
B ieB E
- . (4.9
107*r N is independent of the values gf>0 andk>0.
L ] Since we are interested in the net transfer of material be-
tween the two sublattices, when the concentration inside the
1076 1 simplex subgraph is much smaller than the concentration in
A 1 the line, a reasonable approximation is to assume the transfer
rate between the sites on the external line and the simplex
1078 . baseline is uniform, and can be described by a position-
| ] independent effective transfer functithug(s),

107 0 Ci(5)— Gi(S) =Keg(S)Ci(9). (4.5)

FIG. 5. Log-log plot of +-G{(s) vs s for the anisotropic  This assumption should be justified since, for lagand
model of Fig. 4(generatiomn=18, k=10"19. Lines 1, 2, and 3, smallk, the main contribution to transfer between siten
respectively show theoretical power laws wi=3;, B,, and the extra line and the adjacent site on the simplex occurs
Ba. through the bond connecting them directly. The contribution

from other paths can be regarded as a uniform perturbation to
This is the region corresponding to time scales over whictihis main term. The effective transfer radg(s) in Eq. (4.5
seepage diffusion dominates, although the easy diffusiofs obtained by averaging over all the transfer sites,
subspace has not saturated. In this range the scaling exponent

is Bo=B1B3. That this should generally be the case can be . . <2 G.JgC,>
seen from the following argument. Kon(S)= <Ci_Qi> 4.6
Consider the equivalent model of Fig. 6, comprising a eff <ai> <Ci> ' '

simplex with all bonds at diffusivityk, connected to a one-
dimensional line with bonds of diffusivity 1k, fed by site The position independence Kf.4(s) implies that the quan-
1. Bonds connecting sites on the simplex baseline to thgjes ij and¢; are uncorrelatedG* cj)= (G )(C;). Mak-

external line have diffusivitg>1. ing this decoupling in Eq(4.6), it follows that.
Let q,(s) andc,(s), respectively, be the concentrations in

the simplex subgraph and in the one-dimensional line of Fig. (s)=1— 2 G

6. It follows that Ket

- & K 4
Z G (s:k.9)g¢(s), (4.3 BEBEB s(sik,g). (47

Substituting Eqs(4.5) and(4.7) into the balance equation for
wherei=1, ... Ng are the sites on the baseline of the sim—f:i ,

plex sublattlce ancG i(s;k,g) is a Green function of the A . R
simplex with bond d|ffu5|V|tyk and the boundarys con- scizz Hijcj+ 6i1Co—g(ci—q;)
nected by bonds of strengthto the auxiliary line. J

=2 HiCij+ 81co—aVs(sik, Q)¢ (4.8

Therefore, net diffusion of material between sublattices re-
duces to a diagonal term in the equations&p,r

ci=G{{"(s+gV¥(sik,9)), (4.9

k where the superscripL) indicates the Green functions for
the extra line subgraph, and so the overall transfer of mate-
1 g rial into the system is controlled by the composite function

1k

1-G¥(s)=1-GY4Y (s+gW¥g(sk,9)). (4.10

FIG. 6. Schematic representation of a model equivalent to the According to Eq.(4.10, the scaling behavior divides
anisotropic structure in Fig. 2. into three regions. For s «close to zero,
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similar graph for the model of Fig. 2 gives a line with slope
v=1, in agreement with the estimate E&.14). However

the prefactor? in Eq. (2.14 does not quite fit numerical
results. We expect that a definition of crossover more sophis-
ticated thano= 7 is necessary.

V. CONCLUSION

The models presented are microscopically anisotropic,
and are chosen so that the easy subspace forms a long, con-
tinuous diffusion pathway. This is not the most general situ-
ation, or even the most common one. It is apt to occur in

anisotropic models of Figs. 1) and 2 O). Lines represent the crushed fibrous materials. More commonly, one might find

theoretical predictions obtained from the static scaling of resisgjther a macroscopic easy-diffusion direction or else bundles
tances(line @ (2.14 and (line b) (2.6).

s<gWq(s:k,g)~st— @D Gdb(s)~s, and therefore
1—é(1"1)(s)~sl‘(dfs‘1)’dvsv, corresponding to line 3 in Fig. 3.
With increasings, 1—G{4"(s)~s'2 which implies that
1— G{9(s)~ st~ (@102 \which explains the scaling ex-
ponent3, the region 2 of Fig. 3, i.e.8,=8185. If we in-
crease s further, then ¥4(s;k,g)~1, and therefore 1
—G{?P(s)~s'? corresponding tg3;=1/2 in Fig. 3. This
analysis explains all the crossovers of G{?(s) observed
in Fig. 3 (see also Figs. 7 and.8

Now consider the timé.= 1/s, for crossover between the
diffusion within the easy subspa¢sopeg; in Figs. 3 and
and the seepage transport regial®pe, in Figs. 3and &
This transition is defined by the elbow gi(k), as is indi-
cated by dotted lines in Fig. 3 for twovalues. It is straight-
forward to studys.(k) and hencet.(k) numerically as a
function of k. When we graph I versus Ik for the model
of Fig. 1 we find a straight line, as expected. The slope an({i
intercept agree with the values of the exponent2 and the
prefactor shown in the asymptotic expansion E26). A

10°
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10!

1072
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FIG. 8. Log-log plot of 1-G{¥(s) vs s for the anisotropic

T
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of short, locally parallel fibers occurring in randomly ori-
ented domains. The latter morphology is reasonably repre-
sented as bundles of randomly oriented tubules, and it be-
haves as a homogeneous effective medium on all but the
shortest length scales. However, in the case of a continuous
easy-diffusion subspace we have seen that interesting cross-
over behaviors are possible. When the effective dimension-
ality of the easy subspace is less than that of the porous space
as a whole, these crossovers arise due to competition be-
tween higher local diffusivity and a growing number of
shorter diffusion paths. If there is a large difference between
the filling time for the easy subspace and the final saturation
time, the easy subspaces can behave as a distributed source,
giving rise to other crossover phenomena.

Such crossover scaling is also expected in nonfractal
structures, which have a similar type of easy-diffusion sub-
space. The simplest example is the case of a long blood
vessel or a long, one-dimensional pipeline embedded in a
slightly porous matrix. If the matrix is two dimensional, for
example, then resistance to seepage through the background
matrix increases logarithmically with length, while resistance
o transport by diffusion along the pipeline increases linearly.
There will be a crossover from linear diffusion to seepage at
a time that depends in a nonalgebraic way on the seepage
diffusivity. In the fractal model of Fig. 2, the time to cross
over from linear diffusion to seepage scales as the reciprocal
of the seepage diffusivity, while for the space-filling easy
subspace shown in Fig. 1, the crossover time scales as the
inverse square of the seepage diffusivity, so that the expo-
nent isy=2. From numerical iteration of the relevant recur-
sion relations, one also finds=2 in cases with subfractal
easy subspace. In particular, the exponedbes not depend
on fractal dimensions.

The power-law exponemg for the time dependence of the
net amount adsorbed has an interesting product form for
times after crossover to seepage dominated diffusion, but
before saturation of the easy subspace. In Sec. IV this was
shown to correspond to a position-independent effective
transfer rate between the easy subspace and the background.

In strongly inhomogeneous and anisotropic media, time
scales are set by competing processes. For the most part, the
corresponding exponents do not characterize universal
classes. The results of the current study demonstrate several
competing transport mechanisms, and show analytically

model of Fig. 1. The two vertical dotted lines identify the crossoverwhat kinds of time dependences can result. For extremely
valuess,;, for the twok values.

anisotropic morphologies treated in this work it is not cor-
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